
TRW Systems Engineering & AD"A242 965:
TR~S8.Development Division jjniiriAi 8

Software Project Management Using Effective
Process Metrics: The CCPDS-R Experience

Don Andres
November 1989 91-13795

rl"RTechnology Series
TehooySre

TRW Tchnology Series
Technology Serie

-Technologyr Series
* TRW Technology series

-tRWTechnolg Series
j- ~f i~rJ~T A

Dixtrlbuion Un~rndtod
F.~ (74d .1p1AhnIs,- ology Series

SOFTWARE PROJECT MANAGEMENT
USING EFFECTIVE PROCESS METRICS:

THE CCPDS-R EXPERIENCE

Donald Andres
TRW Defense System Group

Redondo Beach, CA

ABSTRACT

The paper captures the project management experience of using process metrics to mea-
sure 'the development of a large software system for the U.S. government. The Command
Center Processing and Display System-Replacement (CCPDS-R) program is a development
effort consisting of three subsystems and over 600,000 lines of Ada source code executing in
a distributed Digital Equipment Corporation VAX VMS environment. The initial subsystem
called the Common Subsystem, consists of over 500,000 lines of Ada source code and is 2 years
into development with a successful Critical Desigi Review (CDR) held at month 25 of the c-n-
tract. Utilizing the new Ada process model, over 280,000 lines of Ada source code have been
developed and integrated into a working demonstration on the operational hardware. This
approach has permitted the validation of the software design, allowed early analysis and reso-
lution of the software performance issues, and provided extensive insight into the usability and
flexibility of the system for the. user community. '\

This first program use of the incremental, demonstration based process model with re-
lated software metrics has been totally successful. The technology now is being transferred to
otftet-9zo~tctsithin the company. The U.S. Government acquisition agency has designated
CCPDS-R as its'flagship program'\and is basing new acquisitions on the approach utilized by
the CCPDS-R program. C.

PROJECT BACKGROUND

The Command Center Processing and Display System Replacement (CCPDS-R) program
will prcvide display information used during emergency conferences by the National Command
Authorities; Chairman, Joint Chiefs of Staff, Commander in Chief North American Aerospace
Command; Commander in Chief United States Space Command; Commander in Chief Strate-
gic Air Command; and other nuclear capable Commanders in Chief. It is the missile warning
element of the new Integrated Tactical Warning and Assessment system architecture developed
by North American Aerospace Defense Command/Air Force Space Command.

The CCPDS-R program is being procured by Air Force System Command Headquarters
Electronic Systems Division (ESD) at Hanscom AFB and was awarded to TRW Defense Systems
Group in June 1987. TRW will build three subsystems. The first, identified as the Common
Subsystem, is 25 months into development. The Common Subsystem consists of over 300,000
source lines of Ada with a softare development schedule of 38 months. It will be a highly
reliable, near real-time distributed system with a sophisticated User Interface and stringent
performance requirements. It will be implemented entirely in Ada.

91 10 22 076

The approach to software development on CCPDS-R is unique to the industry. Extensive
tailoring of DoD-STD-216?, by TRW and the government as a team, allowed many innovative
techniques and the orchestration of a successful Ada software development program. These
innovations already have been proposed on other TRW developments and could well become a
DoD and industry standard for Ada software development.

The specific features of the new Process Model are described in another paper, "TRW's
Ada Process Model for Incremental Development of Large Software Systems" [Royce 1990]. In
summary, the Ada process Model is a uniform application of incremental development coupled
with a demonstration-based approach to design review for continuous and insightful thread
testing and risk management. The use of Ada as the life cycle language for design evolution
provides a vehicle for uniformity and a basis for consistent software progress metrics. Ada
has proven also to be a significant benefit in the incremental development/integration/test ap-
proach, particularly in enabling rapid integration of software from multiple CSCIs.

The CCPDS-R Softwaxe test approach is described in a paper, "Incremental Software Test
Approach for DoD-STD-2167A Ada Projects" [Springman 1989]. The test approach has been
modified and enhanced significantly as both TRW and the customer better understand the test
requirements and implications of specific test techniques. Tailoring of the approach is necessary
as experience is gained from earlier test phases.

This paper describes the management implications of operating under the new software de-
velopment process. The primary emphasis and features provide early visibility into the process
with extensive prototyping, incremental builds and early demonstrations. The process is then
monitored and managed by use of software process metrics tailored to the CCPDS-R program.

o Management Characteristics

CCPDS-R employ a number of innovative management and technical methods that are
intended to maximize software development productivity while minimizing development and
test risks. Many of these methods take advantage of Ada software engineering techniques, and
depart from the traditional software development "waterfall" process in favor of an approach
closer to the "spiral" model [Boehm 85]. The CCPDS-R approach emphasizes continuous early
design integration and demonstration (Figure 1). TRW has incorporated the Ada Process
Model in the CCPDS-R software planning documents, including the Software Development
Plan (SDP) and the Software Standards and Procedures Manual (SSPM). The model is based
on incremental development and extensive prototyping, and is being refined as experience is
gained during the development of the CCPDS-R software. The particular innovations of the
CCPDS-R approach are discussed briefly herein. These innovations have helped formulate a
good set of process metrics to measure software status.

o Two Pass Design Approach

The CCPDS-R approach is a two pass design philosophy (Figure 2); the first pass is proto-
typing to demonstrate feasibility and the second pass formally captures the design recommended
by the prototyping results. To employ this approach most productively, easily reconfigurable
software architecture components are needed to rapidly integrate applications components to
determine software functionality and projected performance. On CCPDS-R, these components

2

Statement A per telecom .
Doris Richard ESD-PAM
Hanscom AFB MA 01731-5000

NWW 12/2/91

CODE DEVELOPMENT& INTEGRATION :.

TRADMIIONAL •

CCPDB-R -
MRf SUn POCICPC

PROGRESS

(c0) DEITIOAL

10 . . ." . .

TII-AE M THS)

FiueO:Comn usytm otNr DEeomntadIterto

7 - conous l teaEEARLY DESOGN • NOso - 1WEG.RA'nO, &,, / \ A V V

40, T~AIT NAL T

douttonan prpaeIh sotwr fo tovr toth I grup TitIeifst

h , oi t t c SIca 4o a 6
-rIKAE (MONTHS)

Figure : Common Subsystem Software Development and Integration

are provided by the etwork Architecture Services (AS) CSCI and the Sotve Architecture
Skeleton (SAS) which encapsulates the top level executable components and their interfaces
[Royce 89).

The management ramifications of this approach are associated with time and technical
risk. It generally takes longer to complete the design and code phase, generate the related

documentation, and prepare the software for "turnover" to the I&T group. This time is offset,
however, by lowering the technical risk of undetected design problems and performance issues.

The sooner problems are discovered, the cheaper they are to fix. A design flaw uncovered as a
result of prototyping should not be regarded as a "failure", but rather as a positive result that
will steer tle design in the proper direction much earlier. The management focus of this new
process is to identify and resolve all major software risk issues by PDR.

The incremental development approach has numerous management benefits; it breaks up
a large software development job into manageable entities. This minimizes the communication
complexity between team members since fewer individuals are working in the development of

any one buld. Management must focus on contents of the builds initially to ensure cohesion in

contents and then that functional capability (and correspondingly the development effort) does

3

SSR IPDR PDR qDR

REQUIREMENTS I ~t DCa For Each I&T Icorporate PuiorUilds
SRSD. ! TDFs:

ISN,,BUILD A DEVELOPMENT I & T

B A E O N&

BUILD AD DEVELOPMENT I &T

- BUILD A3 DEVELOPMENT : I & T

TRR

BULDA4 DEVELOPMENT I & T
" s A

For Each Build, Two-Step Process:
SP

P~TPR
I I STPR. ST1

'DEMO DEMO TOTAL
! 7PDW SUBSYSTEM

=1 VCDW
DEALDTOR1

! CODE
I SLDD SDDD SDF

- - - ---------------------------------

Figure 2: Software Development Approach-Common Subsystem

not slip to later builds. An indirect effect of this process is a highly motivated software engi-
neering and development organization. They strive to produce an excellent product because of
the near term visibility of their product - software code.

o Early Demonstrations

In concert with the early prototyping philosophy, tangible design progress is shown to
CCPDS-R program management and the government early and often during the design process
(Figure 2). On past programs, where design progress was measured by how much documen-
tation and paper analysis was produced in support of PDR and CDII, the paper reviews were
usually judged successful, with little visibility into design feasibility or potential problems. To
correct this, formal demonstrations are scheduled for the Customer and Users at key points in
the design process. Items to be demonstrated include user/system interfaces, functional soft-
ware capabilities, and prototyped solutions for high risk items. The demonstrations are natural
extensions of design activities, minimizing the generation of formal documentation and demo-
specific software. These demonstrations provide early visibility in selected design areas so as
to obtain early feedback, not to verify requirements or performance. Management attention is
required to ensure that the government and the contractor stick to the purpose of the demon-
strations. This avproach has resulted in 125,000 source lines of Ada code being developed,
integrated, and demonstrated at PDR (month 16 of current contract) and 280,000 Ada source
lines at CDR (month 25). These demonstrations included critical components executing under
peak load to provide tangible evidence that TRW's design would meet the stringent CCPDS-R

4

Software Re-Use Within CCPDS-R Life Cycle
430,000 Newly Developed
225,000 Reused
655,000 Total Source Lines

r-----------------------------------1I
1 I

20,000 SLOC Re-Use 300,000 Newly Developed CCPDS-R PROJECT
I I

198- 1871987- 1990 NAS CSCI

IR&D Block A 5500SO NwMdfe
Ada Common] S,0 LCNwMdfe

Block A Projects
~PDS

,Subsystem

105,000 SLOC Re-Use 75,000 SLOC New
from Common Subsystem -1991

7BockB1SAC
" ubsystem

i00,000 SLOC Re-Use i
from Common Subsystern

L---------------------------------J

Figure 3: Reusable Software

performance requirements. Informal demonstrations are given as part of design walkthroughs
or status reviews. The demonstration audiences include senior engineering personnel from other
programs in TRW to promote technical feedback and reuse of by other programs.

o Reusable Software Components

Ada encourages modularity in the software, which promotes reuse of components. For
example, on CCPDS-R, the entire NAS CSCI is essentially an application-independent set of
components reusable by any DEC VAX/VMS application (Royce 1989]. On CCPDS-R, the
software developed under the basic contract for the Common Subsystem will be heavily reused
for subsequent Processing Display Subsystem (PDS) and SAC Subsystem options, because the
basic software is being designed for reuse. (Figure 3)

Particular management attention is necessary to ensure the maximum reusability of the
software. While this is aided by standards and features of Ada, the concept of reusability must
continually be a topic for discussion at technical interchanges and design reviews. The govern-
ment and development team must be kept aware of the reusability benefits so as to tailor the
various subsystems requirements to enhance the potential for reusable software.

o Use of Schedule Tools

5

CCPDS-R has numerous milestones and hierarchies of schedules, which are used by man-
agement and developers at all levels of the program. It is essential to employ a scheduling
methodology that is tool based in order to keep the process of regularly statusing and updating
the schedules manageable. CCPDS-R is using the VISION scheduling system with a compan-
ion graphics generator. The scheduling organization has integrated all of the C/SCSC data,
WBS elements, and detailed activity networks and milestones into a tiered set of schedules that
satisfies Government and TRW needs. All schedules are statused monthly with the earned value
cost data driving the schedule update process relatively automatically. This provides an easy
mechanism to compare cost/schedule data with other process metrics. In addition, detailed
weekly schedules are generated showing activities, milestones and products for each performer.
These are statused at least monthly, and serve to create schedule awareness throughout the
program to the worker level.

o Risk Management

Software risk management is a continuous activity on any large program. CCPDS-R's
incremental development approach combined with extensive early prototyping is a continuous
risk management strategy. In general, every program should generate a Risk Management Plan
that identifies risks and concentrates on the top problem areas and mitigation procedures to be
followed. CCPDS-R has a Risk Review Board, comprised of representatives from all program
areas, that meets at least monthly to identify, assess and resolve risk items. All risk items are
identified as early as possible, documented, and assigned to a specific individual to work, along
with a specific plan for mitigating the risk. We regularly review the risk items to assure that
all possible avenues for solutions are explored.

SOFTWARE DEVELOPMENT MANAGEMENT INDICATORS (METRICS)

A set of management metrics has been developed by TRW and the government to facilitate
greater insight into the software development process. This is a direct fallout of a government
directive by General Skantz requiring use of software process metrics. The CCPDS-R metrics
were planned and implemented to minimize productivity impacts. Metrics collection standards
were incorporated into the Software Standards and Procedures Manual early in the program
(Month 3) to impose metrics collection through software standards. Automated tools were de-
veloped for collecting many of the detailed metrics directly from the evolving Ada design files.

One of the key features of the homogeneous Ada life cycle representation (i.e., Ada as a
design language) [Royce 1990] is the consistency of metrics. Throughout the life cycle, the same
metrics can be evaluated to ascertain progress, product change and product quality. Since Ada
program units are being developed in the design phase, their metrics can be compared against
planning estimates to evaluate progress and trends. This gives management objective insight
early in the life cycle and allows reaction to any changes which are considered off-nominal before
they result in undesirable side effects.

By providing continuous Software Problem Report (SPR) metrics against all configura-
tion controlled components, component reliability and quality can be assessed. This provides
early indicators of which components require further work. These metrics are tracked during
the management of the project, with planned value profiles measured versus thresholds which

6

alert management that redirection/further evaluation is necessary. Under configuration man-
agement, design problems and fixes are formally tracked. The record of problems and solutions
provides substantial data for predicting future performance and product reliability.

The following is a list of metrics which are gathered and reported monthly on the CCPDS-R
project.

* CSCI and Subsystem Characteristics

1. Number of Ada source lines (Figure 4) by CSCI and total subsystem

2. Number of Software Development Files (SDFs) (Figure 6)

3. Complexity

" Development Progress by Build, by CSCI and for the whole subsystem (Figure 6 and
Figure 7)

1. Design Progress: Ada ratioAda+ADr

2. KSLOC Standalone tested

3. KSLOC Integrated

" Effort Expenditure

1. Cost variances, Schedule variances (By CSCI and Build)

2. Effort expended by Development activity (Preliminary Design, Testing, planning,
etc.)

3. Staffing (Actual vs Planned) (Figure 8)

" Software Architecture Stability

1. Number of Nodes, Ada Main Programs, Ada Tasks, Sockets (Top Level Message
Interfaces)

" Program Volatility (ECP Impacts)

" Action Item Closure History

" SPR History: Number of SPRs by Build, by CSCI and for the whole system (Figure 11)

" Software Testing

1. Subsystem test progress (Figure 9)

2. Number of test procedures (estimated and completed)

3. Number of SRS requirements (existing and verified) (Figure 10)

" Reliability (Software failures following a baseline turnover) (Figure 12)

" Resource Utilization

1. Host development environment

2. Target hardware utilization

7

o Management Use of Metrics

Our experience with metrics collection and reporting has been very positive. Trends and
issues have been explicitly observable, stimulating detailed questions and early resolution of
potential problems. The metrics approach has also promoted more uniform communications,
checks and balances and quantitative explanations for:

1. Customer/Contractor interaction

2. Customer/Higher Government Authority Discussions

3. Project/Corporate Management Review

4. Internal Software reviews

5. Software/Project Manager Review

Highlights of these metrics will be discussed herein concentrating on the current progress
(Month 24) of the program to illustrate the effective use of the metrics as management mea-
surement tools.

The software size history (Figure 4) depicts the software size in terms of Ada source lines
of code at contract award versus the current size estimate. The graphic depicts the estimate
of the software size as it has changed based on monthly estimates. Normally, a graph as illus-
trated in Figure 4 would indicate disaster since the size has doubled in two years. However, on
CCPDS-R, we adopted the Ada COCOMO method of counting source lines of code midway
through the process [Royce 1990] and [Boehm/Royce 1988]. This resulted in the largest increase
in code size - primarily in SSV. Secondly, we opted to produce some of the mundane, clerical
software with tools as opposed to the brute-force coding technique. As a result, a software tool
set sized at about 15,000 Ada source lines of code produces approximately 200,000 source lines
of operational code (Table 1).

Tool Characteristics Operational SW Produced
Name SLOC Dev. MM CSCI Function SLOC
SAS Builder Tool 6500 10 SSV SW Architecture Skeleton 20,000
Format Build Tool 2500 6 DCO Display Format Tables 17,000
CCPDS-R Message Tool 3500 12 CCO External I/F Validation 23,000

Format Outbound Messages 17,000
_TAiS Message Database Definitions 5,000
SSV SGI Message Type Declarations

SSMS 2,000
Common & SAC 49,000

CCOMS 3,000
Forward Users & Sensors 6,000

Message 10 Tool 2100 2 SSV Data Reduction/Msg Print 60,000
Total 14,600 30 "Cookbook" Software 202,000

Table 1: Tool Produced Software

8

I ~Source lines (I]o,
ContracL Current

CSCI Award Sise Auto'
NAS 20 18.6 0
SSV 18 182 140
DCO 47.5 40.4 17
TAS 17 9.6 5
CMP 23 10.2 0
CCO 24 75.5 40

Total 149.5 336.3 D202

Total
Newly Developed 2 0

350

SL(- 0(ioo,)-

250

200 - 96,09609
ISO_ 00e 0000 O 0 0 0 0 0 0 0

1 000000

100

I I IIIIIIIIIIIIIIII
It I

5 10 15 20

Contract Month

Source Code Generated Automatically by Tool

2 Newly Developed = Total Developed - Tool Generated

Figure 4: Development Progress-Common Summary

9

The overall progress for each subsystem is described at a high level via the Development
Progress Summary (Figure 5). This single metric shows the development schedule, software
size and progress to date by software build. The progress is depicted as percent complete for
design/code and standalone test activities. The shading indicating overall build progress repre-
sents a combination of the financial cost/schedule data and the software detailed development
metrics data. This metric gives a good overall picture of status and potential problem areas
requiring management attention, and has been an effective means of conveying status to higher
levels of management. The next level of detail for software development progress indicates

SLOC Legend
(100o,) 100% AO Ds.s 100%il__ __ __ __ __ __ 100% Co.dd P.n-

.A Completed Milestone

APDWACDW TOR4. &TOR D%= Ada/(Ada+ADL)
T%= (# CSCs Tested)/(# CSCs'

42.6 Al loo = 100% Shading= Overall Build Progress
APDW ACDWOR4 &TO oR (C/SCSC-Metrcs)

60.5 A2 loo- 100% M/E

ADW AcDwrOR4 AToR May
1989

186.2 A3 g o,%
ADW ACDW 4TORLTOR

39.3 A4 so 0%
w C~A cDwTOR

&ss ~~ 4reDW &TI, R ~
6nsIySAT T~d Sol

ASSR ADRa ADR 6CDR

0 1 .I . 1' 5 . . . '2'0 . 25 I A i
Contract Months

Figure 5: Development Progress-Common Subsystem

the status, by software CSCI for each build (Figure 6). The total number of software devel-
opment files is tracked as well as the total estimated source lines of Ada code by CSCI. The
designed/coded status is indicated by percent complete (Ada/(Ada+ADL)) of software source
code. The current month (CM) column indicates the progress made during the past month by
CSCI. This is helpful to determine which areas are falling behind or making little progress. The
"tested" column shows informal stand alone testing complete as a percent of the total source
lines of code. The "documented" status depicts the percent of software development files with
completed documentation. The graphics depict the actual progress versus the plan for the total
common subsystem software for designed, coded, standalone tested, and documented. This
metric allows immediate insight into progress versus the plan. This same metric with build
specific metrics (Figure 7) is used as the primary measurement by management to track the
individual builds and is especially useful when many builds are in development simultaneously.

10

Designed Tested Documented
Total Total Complete TBD c, . Tested Complete

CSCI SDFs KSLOC (Ada) (ADL) % ADL . Ad. KSLOC % SDFs %
NAS 47 18.6 18.6 0 100% -.2 18.6 100% 47 100%
SSV 46 182 182 0 100% 33.8 142.6 78% 22 47%
DCO 17 40.4 39.6 .8 98% .7 25.8 63% 12 70%
TAS 16 9.6 8.3 1.3 86% .7 9.6 100% 16 100%
CMP 21 10.2 10 .2 98% -.3 3.8 37% 8 38%
CCO 9 75.5 57.8 17.7 76% 2.2 12.6 16% 2 22%
Total 156 336.3 316.3 20 94% 36.9 213 63% 107 68%

Designed/Coded (% Complete)
100

90
so

70
60 Plan -O

% soActual*
40
30 Legend
20 **e

10
I FI I I I-- 7- - - I

5 10 15 20 25 30 35

% of Contract Month

LOC KSLOC Standalone Tested
100

60 00 Plan 0

40 . Actual **40

20 - Legend

5 10 15 20 25 30 35

% of Contract Month

SDF. SDFs Documented
100
so -1
60 I Plan 0o C)40 - Acua

20 1
20 -Legend

I I i I i I i I I I I " i I i i i I i I I i I I I I I I i I 1 I i I I

5 10 15 20 25 30 35
Contraet Month

Figure 6: Development Progress-Common Subsystem

11

Designed Tested Documented
Total Total Complete TBD cm Tested Complete

CSCI SDFs KSLOC (Ada) (ADL) % ADL * Ad. KSLOC % SDFs %
NAS 6 1.5 1.5 0 100% 0 1.5 100% 6 100%
SSV 13 18 18 0 100% .2 18 100% 13 100%
DCO 12 21.2 21.2 0 100% -. 1 21.2 100% 12 100%
TAS 6 2.8 2.8 0 100% 0 2.8 100% 6 100%
OMP 7 2.7 2.7 0 100% 0 2.7 100% 7 100%
CCO 2 4.6 4.6 0 100% 0 4.6 100% 2 100%
Total 46 50.8 50.8 0 100% .1 50.8 100% 46 100%

Designed/Coded (% Complete)
100 -

90 - Complete
so70
TO

60 Plan -o
%-so0 Actual *

40 -0 Legend
30

20 S
10 0

I 1 1 T I 1 I 1
5 10 1s 20 25 30 35

% of Contract Month

SLOC KSLOC Standalone Tested
100 .P a 0 0
so - Actual 9 9

60 - Legend
40 -

20 1 1-T
r-

6 10 15 20 25 30 36
% Of Contract Month

SDF9 SDFa Doctumented
0

IPlan OOOso Actual • 9

so
Legend

40

20

5 10 is 20 25 30

Contract Month

Figure 7: Development Progress-Build A2

12

Software staffing (Figure 8) is shown as personnel versus time and shows actual headcount
as well as planned staffing needs. Additional metrics track attrition and additions on a monthly
basis. A large turnover in personnel each month is a good indicator that downstream problems
will occur due to the added training and "learning curve" required to assimilate new person-
nel. CCPDS-R's experience to date has been very positive with very low attrition other than
planned departures. For example, the large change in Month 24 indicated the planned addition
of test personnel and design engineers leaving the project.

Personnel Baseline 00
Count Actual

100 -

90 - Legendso _ so'R 1880 8 0To - 00

0- 606 000000

so 06000 0
40 - ss

30 0

10 -

S I I 1 I I' I 1' " I I 1 1I ' I I I I1 f' I I I I "I I' I I "I -I I I I 1I I "

5 10 is 20 25 30 35

Contract Month

+14 -
Additions 12 12

+12

+10 -

+8

+6

+4 -33 33 3

+2 - --

Attritions-14 510 15 20 25 30 35

Contreet Month

Figure 8: Staffing Profile History and Addition/Attrition History

13

! Legend

SLOC TP% LeA%
(1000s) BITI !M/E

0 MAY A Completed Mu..,...
2 .e 100% 1989 TP%= Test* Pr.oplf .csl.

TR%= %Tos Reporting
0.8 BIT2 loo Shadlag. Overall Test Progtee

156.2 (CISCSC+Meiric8)

39.3 BIT3 2B TTTf

336.3
R SATi

141 0oY,, 100% , BIT T P%0 0TR

10SAT2 _______________

439, SAT3 so%T

149

Ila ESTI io, ~

371 ET oJR

34 ..s++EST3:+TP , TR%

36?

FQT TP% TR%

NORAD

2036 vladg] tsd

AAOJAI 4A2ALA2 A3 AA4 &AS
I I I " I I I | I I I I I ' I I I I I)

10 15 20 25 30 35 40
Contract Months

Figure 9: Testing Progress-Common Subsystem

The overall test progress for each subsystem is measured in a single graphic metric (Fig-
ure 9) similar to the development progress metric. This graphic is divided into two sections:

" Build Integration Testing (BIT)

" Formal Test including Stand Alone Testing (SAT), Engineering String Testing (EST) and
Formal Qualification Testing (FQT)

The BIT progress is tracked for each software build by source lines of code and progress of
test cases generated and executed. The measurement is percent complete; progress assessment
is based on the monthly financial data. The Formal Test progress is tracked by requirements
verified in each test period (SAT, EST, or FQT) and progress of test cases generated and ex-
ecuted. There is an overall status line to indicate the total subsystem progress as a percent
integrated and as a percent verified.

The Software Requirement Verification metric (Figure 10) provides the detailed plan and
status by test period and CSCI. This metric contains an indicator per CSCI per test period,

14

e Common Subsystem py = previously verified in SAT
Requirements Verified

Completed/otal planned
TEST SOURCE NAS SSV DCO TAS CMP CCO TOTAL
Build AO/AI SAT 48/49 5/6 53/54
Build A2 SAT 8/8 10/10 15/15 33/39 3/4 69/76
Build A3 SAT 14 126 58 14 56 4 0/272
Build A4 SAT 58 57 28 0/143
Build A5 SAT 5 0/5
EST 1 75/75 10/10 21/21 106/106

EST 2 59 (46 pv) 42 64 82 (1 pv) 6 (1 pv) 8 0/261 (48 pv)
EST 3 16 150 185 40 29 61 0/481
FQT 25 164 217 48 39 82 0/575
TOTAL 238 490 602 225 226 192 228/1973 (48 pv)

Requirements ITotal planned Requirements -

Verified Requirements Verified*

2000 -

0soo - Legend

1600 -

1400

1200 -

1000 -

B00 -

S00 -

400 -

200 -

I I I I I I 1 I

5 10 15 20 26 30 35

Contract Month

Figure 10: Verification Testing Progress

M/N where M is the number of requirements allocated to the test period and N is the number
of requirements successfully verified and signed off by the government. The graphic depicts the
progress versus the plan as a composite of the total requirements to be verified in the subsystem.

One of the benefits of the incremental development process is the ability to evaluate soft-
ware quality and reliability early in the development cycle. A measure of this quality can be
determined by the number of Software Problem Reports (SPRs) per CSCI (Figure 11). SPR
statistics are gathered by CSCI, priority, and category. The open SPRs are addressed at the
weekly Software Configuration Control Board (SCCB) to review status and approve appropri-
ate action for resolution. The graphic metric tracks SPR3 by age and is helpful to determine
delinquent SPRs which may severely impact other areas of the program. We use a metric of
SPRs/month scaled to 1000 Source lines of Ada code under test to illustrate software quality
and reliability (Figure 12). The CCPDS-R average rate to date is .3 SPRs per 1000 SLOCs
per month, which is well below TRW's experience on other major software projects at the
equivalent stage of development.

15

Priority Category

CSCI 1 2 3 4 5 S/W Doc Des Other Total Open Closed Delinq

NAS 7 31 35 28 21 75 7 21 19 122 17 105 1

SSV 2 39 26 11 15 58 5 15 15 93 19 74 11

DCO 0 17 5 7 9 32 0 4 2 38 3 35 2

TAS 0 23 20 4 3 40 0 5 5 50 6 44 I

CMP 0 13 3 1 3 I7 0 2 1 20 2 18 0

CCO 0 19 2 0 4 23 0 1 1 25 5 20 1
PSSV 0 0 0 0 0 0 0 0 0 0 0 0 0
PDCO 0 0 0 0 0 0 0 0 0 0 0 0 0

PTAS 0 0 0 0 0 0 0 0 0 0 0 0 0

PCO 0 0 0 0 0 0 0 0 0 0 0 0 0
Support 4 32 37 18 19 60 0 15 35 110 15 95 4

Test 0 23 6 2 0 12 2 0 17 31 1 30 1

OS/Vendor 1 3 27 14 13 24 0 0 34 58 12 46 3

Totals 14 200 1 I II ST 34 14 _I3 129I 547 [80[46T 24

Figure 11: Software Problem Reports (SPIRS)

16

SPRwKSLOC BY MONTH

- -- - CUMULATIVE AVERAGE

TYPICAL

RANGE

I~ AN __ A I AG I m I

Im

Figure 12: SPIs per KSLOC per Month

17

LESSONS LEARNED

The CCPDS-R program experience using the new Ada Process Model and software metrics
has proven to be a successful. The project has reacted well to the new approach and adapted as
necessary. Likewise, we have adapted the initial process model to provide greater efficiency and
improved productivity. The following aspects of managing the software development process
are working well:

" The early preparation and planning for the program. This was accomplished largely dur-
ing the concept definition phase prior to the full-scale development and focused on stan-
dards, tools, schedules, staffing plans, test program plans and early development of the
foundation components - NAS.

* The general approach based on the new process model. This includes the early software
builds and design integration resulting in software being integrated largely prior to turnover
to Integration and Test. The technical quality evaluation that is being performed by the
software engineering and software test organizations augments the typical software quality
assurance activities.

" The software metrics. The software metrics have proven to be effective management mea-
surement tools for progress and quality assessment.

" The capability demonstrations. These demonstrations are timely, identify technical risk
areas early and focus risk attention, force integration as part of the design process early,
and make software visible to customers, users, and management.

" The early exercise of standards & tools. The development standards and tools were pro-
duced prior to the start of the full-scale development effort allowing the software team to

hit the ground running at contract start. The first build pioneered the SSPM and tool
set to incorporate lessons learned into the larger later builds.

" Adquate schedule for PDR and CDR. Scheduling adequate time for requirement defini-
tion and design prototying has helped to produce effective demonstrations at these major
milestones thereby lowering the risk to the I&T schedule.

" Problem identification/resolution. The software team made numerous mistakes in the first
10 months of the project. We solved these problems early, flushed out the inefficiencies
in the new process and substantially reduced rework time.

On the flip side, all is not perfect. There are some areas that can be improved as the

project continues into the two new subsystems.

* Computer resources. Ada development projects require extensive computing resources

(CPUs, memory, disks). This is especially true when the software is integrated into a

large, testable entity. Making efficient use of these resources is a difficult task, requiring
detailed planning for effective use of computer resources.

* Keep design out of the requirement specification. We were somewhat successful in this
area; the project still has too much design detail in the software requirement specifications.
[Grauling 1989]

18

" Everyone must follow Process Model: Designing and coding early requires total commit-

ment. The government personnel and the project's system engineering organization must

make timely decisions, especially as related to hardware and user interfaces. CCPDS-R

uses government/contractor working groups to make these decisions, but timeliness could

still improve.

" Automated Graphical representation of design. While this was not required by the soft-
ware development team, it is a definite need by the reviewers of Ada design, such as,

project management, system engineering, and government personnel. The development

team has found that Ada itself is readable, unambiguous, and sufficient as a design/development

methodology.

* Software Configuration Control. Our configuration control concept is based on a set of

FORTRAN tools adapted to work in an Ada development environment. These are not well

tuned to Ada and Ada compiler capabilities. We are presently investigating improvements

in this area.

" Test program. The effectiveness of the test progress is yet to be determined. The approach
to incremental testing seems to be working. The government imposed military standards
and data item descriptions, which impose rigid constraints, can lead to a costly test

program. [Springman 19891

SUMMARY

The success of the CCPDS-R Program to date has been extraordinary. The software de-
velopment team, all levels of management, and the customer/user community are very satisfied
with our utilization of the new process model with progress metrics. Managers and customers

appreciate the added insight into the software development process and the technical risk evalua-
tion coupled with the approach. The software development and test team enjoy the opportunity
to see their efforts demqnstrated early in the process. This indirectly provides strong motivation
to do well and has allowed them to have more time to focus on design and formal test, while

minimizing the rudimentary software integration process. The user community is probably the

most impressed since they have "seen" their ultimate product very early in the development

cycle. This has permitted them to refine their "usability ideas" with actual hardware and soft-
ware, as opposed to using paper concepts.

19

ACKNOWLEDGMENTS

The success of the CCPDS-R program to date is due to multiple contributions includ-
ing TRW's System Engineering and Development Division's Management ability to try a new
approach, ESD willingness to adapt to a new concept, and the entire CCPDS-R System and
Software Engineering team to implement and produce within the given contractual constraints.
Explicit acknowledgments are due to Walker Royce who was instrumental in developing the
CCPDS-R process metrics and to Charlie Grauling, Tom Herman, and Mike Springman, whose
day-to-day involvement, commitment, and management have guided the CCPDS-R program to
achieve these successes.

BIOGRAPHY

Donald Andres is the Deputy Program Manager on the CCPDS-R Program. In this po-
sition he is responsible for all the software development activities from requirement definition
through formal test. He received his B.S. in Mathematics from Syracuse University in 1968 and
his M.S. in Computer Science from Purdue University in 1969. Mr. Andres has been at TRW
for 17 years and has been in management positions for the past 14 years. His other assign-
ments included Laboratory Manager for a group of 250 technical personnel performing software
analysis and development activities on major Air Force Programs for avionics, conmand and
control, and management information systems.

REFERENCES

[Grauling 1989] Grauling, C. G., "Requirements Analysis For Large Ada Programs: Lessons
Learned on CCPDS-R", TRI-Ada Proceedings, Pittsburgh, October 1989.

[Springman 1989] Springman, M. C., "Incremental Software Test Methodology For A Major
Government Ada Project ", TRI-Ada Proceedings, Pittsburgh, October 1989.

[Boehm 1985] Boehm, B. W., "The Spiral Model of Software Development and Enhance-
ment", Proceedings of the International Workshop on the software Process and
Software Environments, Coto de Caza, CA, March.

[Royce 1990 1 Royce, W.E., "TRW's Ada Process Model for Incremental Development of
Large Software Systems", Proceedings of the 12th International Conference on
Software Engineering, Nice, France, March 26-30, 1990.

[Boehm/Royce 1988] Boehm, B. W., Royce W. E., "TRW IOC Ada COCOMO: Definition and Re-
finements", Proceedings of the 4th COCOMO Users Group, Pittsburgh, Novem-
ber 1988.

(Royce 1989] Royce, W. E., "Reliable, Reusable Ada Components for Constructing Large
Distributed Multi-Task Networks: Network Architecture Services (NAS)", TRI-
Ada Proceeding, Pittsburgh, October 1989.

20

